Engineering Mathematics GATE-1994

Watermark

Q 1: The inverse of a matrix \begin{bmatrix}a&0\\0&b\end{bmatrix}





Ans is )

Explanation:

Q 2: The limit of f(x)=\frac x{\sin x}  as x→0 is





Ans is )

Explanation:

Q 3: Integrating factor for the differential equation \frac{dy}{dx}+P(x)y=Q(x)  is





Ans is )

Explanation:

Q 4: If \underline i,\underline j,\underline k  are the unit vectors in rectangular coordinates, then the curl of the vector i\underline y+jy+\underline kz





Ans is )

Explanation:

Q 5: The solution for the differential equation \frac{d^2y}{dx^2}+5\frac{dy}{dx}+6y=0  is





Ans is )

Explanation:

Q 6: The Taylor’s series expansion of f(x) around x = a is ______________.

Ans is )

Explanation:

Q 7: For a differential function f(x) to have a maximum, \frac{df}{dx}  should be ________ and \frac{d^2f}{dx^2}  should be ____________.

Ans is )

Explanation:

Q 8: Mdx+Ndy  is an exact differential when __________.

Ans is )

Explanation:

Q 9: The integral of x\sin x  is ____________.

Ans is )

Explanation:

Q 10: The Green’s theorem relates _________ integrals to surface integrals.

Ans is )

Explanation:

Q 11: If ‘a’ is a scalar and \underline b  is a vector, then \nabla\times a\underline b=  _________.

Ans is )

Explanation:

Q 12: The differential equation \frac{d^2y}{dx^2}+y=0 , with the conditions y(0) = 0 and y(1) = 1 is called a _______ value problem.

Ans is )

Explanation:

Q 13: State with reasons whether the statement is true or false

The series 1+x+x^2+x^3+  for x < 1 is divergent.

Ans is )

Explanation:

Q 14: Match the items in the left column with the appropriate items in the right column.

(I) \cosh at (A) a/\left(s^2+a^2\right)
(II) \sinh at (B) a/\left(s^2-a^2\right)
 (C) s/\left(s^2-a^2\right)
 (D) s/\left(s^2+a^2\right)
Ans is )

Explanation:

Q 15: Match the items in the left column with the appropriate items in the right column.

(I) \frac{dy}{dx}=x^2+y^2 (A) linear 1st order ODE with constant coefficient
(II) \frac{dy}{dx}=x^2+y (B) linear ODE with variable coefficient
 (C) 1st order nonlinear ODE
 (D) linear 2nd order ODE
Ans is )

Explanation:

Q 16: Find the eigenvalues of the matrix \begin{bmatrix}0&2\\-1&-1\end{bmatrix}

Ans is )

Explanation: